Search results for “Differential manifolds dover books on mathematics”

Differential Manifolds (Dover Books on Mathematics)The concepts of differential topology form the center of many mathematical disciplines such as differential geometry and Lie group theory. Differential Manifolds presents to advanced undergraduates and graduate students the systematic study of the topological structure of smooth manifolds. Author Antoni A. Kosinski, Professor Emeritus of Mathematics at Rutgers University, offers an accessible approach to both the h-cobordism theorem and the classification of differential structures on spheres.”H…

Curvature in Mathematics and Physics (Dover Books on Mathematics)This original text for courses in differential geometry is geared toward advanced undergraduate and graduate majors in math and physics. Based on an advanced class taught by a world-renowned mathematician for more than fifty years, the treatment introduces semi-Riemannian geometry and its principal physical application, Einstein’s theory of general relativity, using the Cartan exterior calculus as a principal tool.Starting with an introduction to the various curvatures associated to a hypersurf…

Tensor Analysis on Manifolds (Dover Books on Mathematics)“This is a first-rate book and deserves to be widely read.” — American Mathematical MonthlyDespite its success as a mathematical tool in the general theory of relativity and its adaptability to a wide range of mathematical and physical problems, tensor analysis has always had a rather restricted level of use, with an emphasis on notation and the manipulation of indices. This book is an attempt to broaden this point of view at the stage where the student first encounters the subject. The author…

The Philosophy of Space and Time (Dover Books on Physics)With unusual depth and clarity, it covers the problem of the foundations of geometry, the theory of time, the theory and consequences of Einstein’s relativity including: relations between theory and observations, coordinate definitions, relations between topological and metrical properties of space, the psychological problem of the possibility of a visual intuition of non-Euclidean structures, and many other important topics in modern science and philosophy.While some of the book utilizes mathem…

Tensors, Differential Forms, and Variational Principles (Dover Books on Mathematics)The aim of this book is to present a self-contained, reasonably modern account of tensor analysis and the calculus of exterior differential forms, adapted to the needs of physicists, engineers, and applied mathematicians. In the later, increasingly sophisticated chapters, the interaction between the concept of invariance and the calculus of variations is examined. This interaction is of profound importance to all physical field theories.Beginning with simple physical examples, the theory of tens…

Calculus of Variations (Dover Books on Mathematics)Based on a series of lectures given by I. M. Gelfand at Moscow State University, this book actually goes considerably beyond the material presented in the lectures. The aim is to give a treatment of the elements of the calculus of variations in a form both easily understandable and sufficiently modern. Considerable attention is devoted to physical applications of variational methods, e.g., canonical equations, variational principles of mechanics, and conservation laws.The reader who merely wishe…

An Introductory Course on Differentiable Manifolds (Aurora: Dover Modern Math Originals)Based on author Siavash Shahshahani’s extensive teaching experience, this volume presents a thorough, rigorous course on the theory of differentiable manifolds. Geared toward advanced undergraduates and graduate students in mathematics, the treatment’s prerequisites include a strong background in undergraduate mathematics, including multivariable calculus, linear algebra, elementary abstract algebra, and point set topology. More than 200 exercises offer students ample opportunity to gauge their …

The Schwarz Lemma (Dover Books on Mathematics)The Schwarz lemma is among the simplest results in complex analysis that capture the rigidity of holomorphic functions. This self-contained volume provides a thorough overview of the subject; it assumes no knowledge of intrinsic metrics and aims for the main results, introducing notation, secondary concepts, and techniques as necessary. Suitable for advanced undergraduates and graduate students of mathematics, the two-part treatment covers basic theory and applications.Starting with an explorati…

Introduction to Differentiable Manifolds (Dover Books on Mathematics)The first book to treat manifold theory at an introductory level, this text surveys basic concepts in the modern approach to differential geometry. The first six chapters define and illustrate differentiable manifolds, and the final four chapters investigate the roles of differential structures in a variety of situations.Starting with an introduction to differentiable manifolds and their tangent spaces, the text examines Euclidean spaces, their submanifolds, and abstract manifolds. Succeeding ch…

Quantum Mechanics (Dover Books on Physics)“Strongly recommended” by the American Journal of Physics, this volume serves as a text for advanced undergraduates and graduate students of physics as well as a reference for professionals. Clear in its presentation and scrupulous in its attention to detail, the treatment originally appeared in a two-volume French edition. This convenient single-volume translation begins with formalism and its interpretation, starting with the origins of quantum theory and examinations of matter waves and the S…